

IT SECURITY SERVICES

IT SECURITY SERVICES

SECURITY CHECKLIST
FOR MOBILE APPS

 IT SECURITY SERVICES
 SECURITY CHECKLIST FOR MOBILE APPS

SECURITY CHECKLIST FOR MOBILE APPS 1.0| Page 2

VERSION HISTORY
Version # Date Author Key Differences

1.0 11/14/2019 Mike Khalfayan

 IT SECURITY SERVICES
 SECURITY CHECKLIST FOR MOBILE APPS

SECURITY CHECKLIST FOR MOBILE APPS 1.0| Page 3

SECURITY CHECKLIST FOR MOBILE APPS
Table 1: Security Checklist for Mobile App Developers

Description
OS Type A Type B

Authentication and Access Control

 User authentication must support adequate
authentication strength.

All Required Required

 Immutable device identifiers, such as unique
device ID (UDID) and International Mobile
Station Equipment Identity (IMEI), must not be
used as credentials.

All Required Required

 The apps shall mutually authenticate the user
and the server.

All Required Required

 The client and server shall properly validate
Transport Layer Security (TLS) or similar
certificates.

All Required Required

 Apps shall counter bidding-down attacks,
including TLS stripping.

All Required Required

 The app shall implement certificate pinning. All Required Recommended

Data Protection

 Secret keys and/or passwords must not be
hard-coded in the app.

All Required Required

 Encryption keys shall be derived from
dynamically set values, such as the user
passcode.

All Required Required

 App-level encryption for data at rest shall be
used.

All Required Required

 Encryption for data in motion shall be used. All Required Required

 Sensitive data, including authentication
credentials, shall be encrypted, even when
stored in the keychain.

All Required Recommended

 IT SECURITY SERVICES
 SECURITY CHECKLIST FOR MOBILE APPS

SECURITY CHECKLIST FOR MOBILE APPS 1.0| Page 4

Description
OS Type A Type B

 The mobile app shall prevent sensitive data
from leaking via the autosnapshot feature of
iOS and similar mechanisms.

All Required Recommended

 The mobile app shall not allow storage, sharing
or pasting of sensitive data onto removable or
shared media and external resources.

All Required Recommended

 The app shall not enable autocomplete for
sensitive text input fields.

All Required Required

 Cached data (e.g., HTTP, camera images and
GUI objects) shall be minimized and deleted
after exiting the app.

All Required Required

 Sensitive data shall not be stored in the SQLite
database on the device; if it’s unavoidable, a
tool shall be used to encrypt the database.

All Required Recommended

 The data logged via the keyboard shall not
contain credentials, financial information or
other sensitive data.

All Required Required

 The strength of cryptography and key lengths
shall be in accordance with FIPS 140-2-
approved security functions.

All Required Recommended

 The apps shall leverage trusted environments
(such as TEE), where available.

All Recommended Recommended

Session Management

 The session timeout shall be of a reasonable
value and configurable.

All Required Required

 Session data shall be deleted when a session is
aborted or terminated unexpectedly.

All Required Required

 GET commands shall not be used for querying
sensitive data; POST commands should be
preferred over HTTPS.

All Required Required

 IT SECURITY SERVICES
 SECURITY CHECKLIST FOR MOBILE APPS

SECURITY CHECKLIST FOR MOBILE APPS 1.0| Page 5

Description
OS Type A Type B

 Error Handling and Logging

 The app shall not log sensitive data on the
system log or file system.

All Required Required

 The crash and debug logs shall not contain
sensitive data.

All Required Required

Permissions

 Permissions and resources granted to apps
(i.e., AndroidManifest.xml, iOS entitlements)
shall be limited to what the app needs to
operate. (If third-party code is reused, this is
valid for the third-party code as well.)

All Required Required

Tampering Protection

 Method swizzling shall not be adopted. (In rare
exceptions, when swizzling needs to be used,
thorough security testing against exploits must
be provided and documented.)

All Required Recommended

 Third-party libraries used shall be validated (via
testing or other means) as free from
vulnerabilities and malicious code.

All Required Required

 Apps shall use server-side checks and shall not
rely on client-side checks for functions that can
be manipulated to steal information or
compromise the app.

All Required Required

 The app shall minimize communication with
other apps and take appropriate measures
when doing so.

All Required Required

 Immutable structures that cannot be
overwritten when not in use shall be avoided
for sensitive data, and mutable structures shall
be preferred.

All Required Recommended

 IT SECURITY SERVICES
 SECURITY CHECKLIST FOR MOBILE APPS

SECURITY CHECKLIST FOR MOBILE APPS 1.0| Page 6

Description
OS Type A Type B

 The app shall not support implicit intents for
Android.

Android Required Recommended

 The app shall use address space layout
randomization (ASLR), where available.

All Required Required

 The app shall validate all input. All Required Required

 The app shall have the necessary measures in
place to avoid race conditions.

All Required Required

 The app shall be able to detect privilege
escalation conditions, including
jailbreak/rooting and unlocked bootloaders.

All Required Optional

 The app shall perform checks for indicators of
compromise.

Android Recommended Optional

 The app code shall be obfuscated. All Required Recommended

Life Cycle

 All test data shall be removed from the app
container (.ipa, .apk, etc.).

All Required Required

 No debugging flags shall be set in the finalized
app.

All Required Required

 The app shall go through application security
testing.

All Required Required

This security checklist should be used as guidance for developers of the security precautions that are
necessary to take in the mobile apps they produce.

The security checklist is divided into seven specific domains:

• Authentication and Access Control

• Data Protection

• Session Management

• Error Handling and Logging

• Permissions

• Tampering Protection

 IT SECURITY SERVICES
 SECURITY CHECKLIST FOR MOBILE APPS

SECURITY CHECKLIST FOR MOBILE APPS 1.0| Page 7

• Life Cycle

Each domain contains a set of requirements and recommendations. Certain requirements are generic,
and some are specific to the OS or programming language used.

The checklist provides differentiates between requirements for Type A and Type B apps. Type A are
higher-security requirement apps, while Type B require less-stringent security. In the columns for Type
A and Type B in the checklist, there are suggested checks for requirements that are mandatory,
recommended and optional.

The checklist does not aim to be a comprehensive list of security requirements. Rather, it focuses on
peculiarities of mobile application security, as well as common security mistakes that developers make.
The goal of following the checklist is to avoid major pitfalls when coding mobile apps. The Rationale
section below provides background and rationale for each of the items included in the checklist.

RATIONALE
Authentication and Access Control

User Authentication Must Support Adequate Authentication Strength

This is a generic requirement, and what is considered adequate will depend on the context and
regulatory environment. Gartner recommends six-character alphanumeric passcodes for enterprise
apps, because they provide sufficient protection against brute-force attacks. In iOS, for example, a six-
character alphanumeric passcode will require 1.7 years of brute-force cracking time, whereas a four-
digit PIN can be guessed in 40 minutes.1,2

However, many banking apps, for example, offer four-digit PIN codes, and many support biometric
authentication on newer devices. Gartner considers fingerprint-based user authentication to be stronger
than four-digit passcodes, but no stronger than six-character alphanumeric passcodes. In this context,
organizations decide to absorb residual risk in the product. In those cases, a best practice is to strongly
associate the device with the mobile application. This practice is called device binding. There are various
ways to perform device binding, typically involving the use of device identifiers to associate the device.

Immutable Device Identifiers, Such as Unique Device ID (UDID) and International Mobile
Station Equipment Identity (IMEI), Must Not Be Used as Credentials

Although using unique device identifiers (UDIDs) to perform device binding is a best practice, it has been
a common pitfall with mobile applications to use device identifiers as security credentials.3 Identifiers
are not considered secret and, as such, they cannot serve as passcodes or authentication credentials.
Increasingly, iOS and Android make it harder to leverage these
identifiers, as well as provide alternative methods that allow identifiers for the application to use to be
derived.

The Apps Shall Mutually Authenticate the User and the Server

 IT SECURITY SERVICES
 SECURITY CHECKLIST FOR MOBILE APPS

SECURITY CHECKLIST FOR MOBILE APPS 1.0| Page 8

App authentication is usually understood as the need for the mobile client to authenticate itself to the
server. However, it is a common attack to tweak and republish apps, redirecting the
authentication to a malicious rogue server (a command and control center). Therefore, to avoid
rogue server attacks, the server must also authenticate itself to the mobile client.

The Client and Server Shall Properly Validate Transport Layer Security (TLS) or Similar
Certificates

This specific recommendation assumes the app is leveraging Secure Sockets Layer (SSL)/Transport Layer
Security (TLS) or another protocol. Throughout this research, we assume TLS or SSL is being used as the
security transport protocol. Other protocols can be used as well, provided there is a security protocol.
Whatever the protocol of choice, certificates must be validated. It is a common mistake not to validate
the TLS certificates allowing man-in-the-middle attacks. (We refer to TLS, rather than the older SSL in all
this research.)

By validating the certificate, the mobile client verifies that the origin of the credential is legitimate.
Usually, TLS certificate validation consists of validating the signature of the certificate.

The App Shall Implement Certificate Pinning

Pinning a certificate consists in only accepting a specific certificate, instead of verifying the general
validity of the certificate. Traditional validation is still appropriate in certain situations, such as where
interaction with a wide range of servers takes place (see the requirement on TLS certificate validation
above).

Certificate pinning is used to prevent man-in-the-middle attacks and fraudulent certificates and can be
particularly useful for in-house-developed applications, where the identity of the server is already
established and known.

Data Protection

Secret Keys and/or Passwords Must Not Be Hard-Coded in the App

This mistake is one of the most frequent in mobile application development. Secret keys,
passwords, passcodes and credentials that are hard-coded in the app are can be easily stolen by
attackers who download the app and reverse-engineer it. There are several alternatives to hardcoding
passwords. One example is to enroll and deploy certificates that can serve as material for
authentication.

Encryption Keys Shall Be Derived From Dynamically Set Values, Such as the User Passcode

To avoid hard-coding of credentials, such as secret keys, they should be derived from dynamically
set values. One easy way to do this is by leveraging the user passcode, if one is used to

 IT SECURITY SERVICES
 SECURITY CHECKLIST FOR MOBILE APPS

SECURITY CHECKLIST FOR MOBILE APPS 1.0| Page 9

authenticate to the app. A simple passcode will weaken the encryption key, so that the key material
used should encompass other values that are independent of the key.

App-Level Encryption for Data at Rest Shall Be Used

Data at rest should be confidentiality protected. Mobile devices provide device-level encryption.
Application-level encryption is provided natively by the OS or offered by the application. Entities
with very high security requirements (typically verticals such as government, defense, and,
depending on the context, healthcare, finance and insurance) may opt to use stand-alone
encryption, while most other apps can use native mechanisms.

When using OS-native encryption mechanisms to encrypt application data, it is essential to ensure
that the appropriate protection class is used. For example, when using iOS default encryption,
NSFileProtectionComplete should be used. This class will keep the files encrypted when the device
is locked, in case of theft or loss. In this case, the strength of encryption depends, in part, on the
complexity of the device passcode. Therefore, developers should keep in mind that a weak
passcode will lead to weak protection. In consumer-facing apps, the publisher of the app has no
control over the strength of the passcode. However, in business-to-employee (B2E) contexts, an
organization can enforce this via policy, with a requirement for passcodes of adequate complexity
(Gartner recommends six-character alphanumeric passcodes).

Encryption for Data in Motion Should Be Used

Most mobile apps employ TLS as a transport security protocol, which provides encryption for data
in motion. In most cases, this is sufficient as a measure for protecting data in motion. Customized
solutions may use proprietary methods of encrypting data in motion through encrypted tunnels or
other mechanisms. Details can be found in the “Market Guide for Secure Enterprise Data
Communications.”

Sensitive Data, Including Authentication Credentials, Shall Be Encrypted, Even When Stored
in the Keychain

What is considered sensitive data depends on the context and the specific regulatory environment.
A fundamental part of the exercise of developing a secure app will be to identify the sensitive data.
That data will have to be encrypted and handled with additional care (for example, it should not be
possible to export that data, as discussed in other items on the checklist).

In iOS and Android, there are keychain mechanisms, which are secure storage spaces to store
credentials (such as passcodes, secret keys and certificates). In the keychain, several levels of
security can be imposed natively. For example, in iOS, the setting kSecAttrAccessibleAlways allows
data in the keychain to always be accessed, whereas kSecAttrAccessibleWhenUnlocked allows
data in the keychain to be accessed only while the device is unlocked by the user. These settings

 IT SECURITY SERVICES
 SECURITY CHECKLIST FOR MOBILE APPS

SECURITY CHECKLIST FOR MOBILE APPS 1.0| Page 10

should be selected with care and should have the maximum security possible.

However, even when these settings are set appropriately, credentials can and should be protected
for high-security applications. For example, the keybag in iOS devices stores keys used to protect
keychain items.

An alternative to native platform resources to protect credentials is whiteboxing (or white-box
cryptography). This method consists of techniques that hide and protect sensitive application data
in its own code. (See the “Market Guide for Application Shielding” for more details, as well as a list
of providers.)

The Mobile App Shall Prevent Sensitive Data From Leaking via the Autosnapshot Feature of
iOS and Similar Mechanisms

To facilitate multitasking, iOS provides snapshots of apps. This allows users to view the app screen
without accessing the app itself. It can be convenient when deciding which app to select and use
next, but it can lead to data leakage. There is a way to obfuscate the app screen and only show the
name of the application. Apps that contain sensitive data should follow this approach.

A similar feature, an overview screen, is available on Android devices; however, we have not
determined whether it is possible to similarly obfuscate the screenshot.

The Mobile App Shall Not Allow Storage, Sharing or Pasting of Sensitive Data Onto Removable or
Shared Media and External Resources

This recommendation will depend on the specific use case. Unless strictly necessary, it should not
be possible to leverage external media that cannot be controlled and monitored. Where this can’t be
avoided, the data should be stored in an encrypted form.

The App Shall Not Enable Autocomplete for Sensitive Text Input Fields Autocomplete for sensitive text
input, such as passcodes, would lead to that sensitive data being cached and prompted as choices when
the user attempts to log in. This is a common pitfall with web and mobile applications and should be
avoided.

Cached Data (e.g., HTTP, Camera Images and GUI Objects) Shall Be Minimized and Deleted
After Exiting the App

Especially for hybrid and mobile web apps, a major problem is how to protect cached content.
There are some inbuilt ways, but the security of the method selected will typically depend on
whether the user has set a complex-enough passcode on the device. It is, therefore, recommended
to minimize stored data, avoid caching sensitive data and delete the data once it is no longer being

 IT SECURITY SERVICES
 SECURITY CHECKLIST FOR MOBILE APPS

SECURITY CHECKLIST FOR MOBILE APPS 1.0| Page 11

used.

Sensitive Data Shall Not Be Stored in the SQLite Database on the Device; If It’s Unavoidable, a
Tool Shall Be Used to Encrypt the Database

Cached data should be avoided (see previous entry). However, there are use cases and applications
where this is unavoidable. The best option in those cases is storing data in SQLite and encrypting it.
A tool commonly used in these cases is SQLCipher.

The Data Logged via the Keyboard Shall Not Contain Credentials, Financial Information or
Other Sensitive Data

The iOS keyboard caches entries provided by users. This is done to assist with autocompletion and
correction functionality. However, sensitive data is exposed to risks when cached on the device,
beyond the application back end's control. Gartner recommends disable caching when sensitive
data, such as credentials or financial information, is entered.

Android is similar, providing a user dictionary in which words and terms entered are logged. To
disable caching, a custom keyboard can be implemented. For select devices when high security is
required, the trusted user interface available in the trusted execution environment could be
leveraged.4

The Strength of Cryptography and Key Lengths Shall Be in Accordance With FIPS 140-2-
Approved Security Functions

FIPS 140-2-certified encryption is a regulatory requirement in specific industries and countries.
However, it is a good practice to follow the so-called “approved security functions” in FIPS 140-2.5

This is because security algorithms become outdated with time. Computational power becomes
strong enough to break certain shorter-keyed algorithms, and researchers sometimes uncover
vulnerabilities that make algorithms breakable (see “Better Safe Than Sorry: Preparing for Crypto-
Agility”).

The Apps Shall Leverage Trusted Environments (Such as TEE), Where Available

iOS and Android platforms have been opening up functionality to developers to leverage the
hardware-based roots of trust on the device (see “Innovation Insight for Trusted Execution
Environments”).

Session Management

 IT SECURITY SERVICES
 SECURITY CHECKLIST FOR MOBILE APPS

SECURITY CHECKLIST FOR MOBILE APPS 1.0| Page 12

The Session Timeout Shall Be of a Reasonable Value and Configurable

This is a generic requirement that will depend on the context. (For details on how to set timeouts,
see “Setting PC and Smartphone Timeouts Is a Blunt Instrument for Mitigating Risks, but an
Essential One.”)

Session Data Shall Be Deleted When a Session Is Aborted or Terminated Unexpectedly

Abnormal termination of an application operation may leave data cached. Therefore, in case of a
crash or an unexpected termination of the application, it should be foreseen that all session data is
deleted, even if the app is built to not store any sensitive data in the first place.

GET Commands Shall Not Be Used for Querying Sensitive Data; POST Commands Should Be
Preferred Over HTTPS

When dealing with web code, it is safer to use POST requests, rather than GET requests, to query
sensitive data. Even when TLS is employed, GET requests can be logged unprotected in locations
beyond the application's control, such as the browser history.

Error Handling and Logging

The App Shall Not Log Sensitive Data on the System Log or File System

Data such as passcodes, passwords and other credentials, as well as private information such as
identifiers, names, phone numbers and payment information, must not be logged. This prevents
attackers that may try to manipulate the app to recover this information.

The Crash and Debug Logs Shall Not Contain Sensitive Data

Logged data stored during crashes is typically sent to the server or stored in the app, and is used to
discover bugs in the app. This data shall not contain sensitive data, such as passcodes, passwords
and other credentials, as well as private information such as identifiers, names, phone numbers and
payment information.

Permissions

Permissions and Resources Granted to Apps (i.e., AndroidManifest.xml, iOS Entitlements)
Shall Be Limited to What the App Needs to Operate (If Third-Party Code Is Reused, This Is
Valid for the Third-Party Code as Well)

It is often the case that apps request more privileges and access to information than they really
require to operate. This makes the app a target for attackers that may try to exploit the application’s
permissions to obtain access to the user’s private information. Apps sometimes run with more

 IT SECURITY SERVICES
 SECURITY CHECKLIST FOR MOBILE APPS

SECURITY CHECKLIST FOR MOBILE APPS 1.0| Page 13

privileges than needed because developers reuse existing libraries in their apps. These libraries
often request certain permissions by default.

Developers shall ensure that their code and the external libraries they leverage do not request
unnecessary permissions.

As a concrete example, in Android, MODE_WORLD_WRITEABLE and MODE_WORLD_READABLE
modes allow access to any applications, as well as any data format. This could lead to malicious

applications accessing sensitive data. Therefore, Android apps shall not create files with
permissions of MODE_WORLD_READABLE or MODE_WORLD_WRITABLE.

Tampering Protection

Method Swizzling Shall Not Be Adopted (in Rare Exceptions, When Swizzling Needs to Be
Used, Thorough Security Testing Against Exploits Must Be Provided and Documented)

Method swizzling is a technique that certain developers use in iOS Objective-C and Swift apps (and,
to a lesser extent, in Android Java apps). Swizzling is not inherently malicious, and can provide
certain performance benefits; however, if used improperly, it could cause security issues. Swizzling
with iOS apps consists of dynamically redirecting method invocations. This dynamicity makes it
possible for an attacker to redirect to a malicious method, rather than the intended one.

Third-Party Libraries Used Shall Be Tested and Validated as Free From Vulnerabilities and
Malicious Code

Developers tend to use third-party libraries that can support the functionality they want to have in
the application. These third-party libraries are often the main source of vulnerabilities for
applications, either because they have not been written properly, or they hold an excessive number
of permissions. Only reputable APIs shall be used, and they shall be validated before use to verify
they are not malicious and do not introduce any vulnerabilities.

Apps Shall Use Server-Side Checks and Shall Not Rely on Client-Side Checks for Functions
That Can Be Manipulated to Steal Information or Compromise the App

If checks such as verifying a user identity or the integrity of the application are left to the client
residing on the mobile app, then there is a risk that the attacker may compromise the client and
bypass those controls. Server-side checks require that the client provides proof to the server, which
validates the controls; therefore, an attacker cannon bypass them.

The App Shall Minimize Communication With Other Apps and Take Appropriate Measures
When Doing So

Apps that are written to freely share data with third-party apps can be a source of leakage, as they
can be exploited by attackers. Therefore, if apps are not meant to share data, they should be locked
down. For example, in Android, an app that does not share data should report

 IT SECURITY SERVICES
 SECURITY CHECKLIST FOR MOBILE APPS

SECURITY CHECKLIST FOR MOBILE APPS 1.0| Page 14

android:exported=“false” in the application manifest.

If apps are meant to share data with other apps, precautions should be taken. In the same Android
example, if sharing between corporate apps is employed, android:protectionLevel “signature”
should be selected, so that the system checks that both apps are signed with the same certificate.

Immutable Structures That Cannot Be Overwritten When Not Used Shall Be Avoided for
Sensitive Data, and Mutable Structures Shall Be Preferred

Immutable objects can only be written once and cannot be erased. This is not only inconvenient,
but can be dangerous when dealing with sensitive data.

The App Shall Not Support Implicit Intents for Android

An intent in Android programming is a description of an action that an app can perform. There are
two possible ways to resolve an intent: explicit and implicit. Implicit intents do not specify the target
component (for example, the application recipient of the data) in an explicit manner. In such a case,
to identify the recipient Android compares the content of the intent to potential recipient
components, thanks to component filters.

Since Android 5.0, the Android platform has been eliminating the option for an implicit intent,6

because a malicious application could impersonate itself as one able to receive and handle the data
from an implicit intent. Information shall be sent only with explicit intents to other components of the
Android system.

The App Shall Use Address Space Layout Randomization (ASLR), Where Available

Address space layout randomization (ASLR) is a feature supported on most modern mobile devices.
It adds entropy to the way an app is memorized on a device. This randomness makes it harder for
an attacker to exploit the app.

The App Shall Validate All Input Received

Input validation consists of verifying that data input in the app is in the expected format and length.
This avoids many of the most common attack techniques, such as buffer overflows. These
techniques try to take advantage of the lack of input validation to send unforeseen input that can
carry out unwanted actions.

In the specific case of an iOS app that has registered a URL scheme, it shall validate the input
received from the URL. It should only be able to receive specific input, to avoid directory traversals,
buffer overflows and other similar attacks.

 IT SECURITY SERVICES
 SECURITY CHECKLIST FOR MOBILE APPS

SECURITY CHECKLIST FOR MOBILE APPS 1.0| Page 15

The App Shall Have the Necessary Measures in Place to Avoid Race Conditions

Race conditions arise in situations in which a control on a specific condition is conducted to lead to
the app taking an action. A typical control can be verifying that the user is authorized to request a
specific file or specific information before fetching it. Race conditions occur when the control is
performed on one app or one user, but the resource is accessed by a different app or user. An
attacker can exploit this to access resources without authorization.

Where the intended resource is shared, race conditions do not solely depend on the specific app.
However, there are some precautions that developers can take to minimize risks of race conditions.

Precautions depend on the specific context. When dealing with temporary files that can be
overwritten, a typical precaution is to ensure that a temporary file with the same name exists.
Another typical action is resource locking for the duration of the intended operation.

The App Shall Be Able to Detect Privilege Escalation Conditions, Including Jailbreak/Rooting
and Unlocked Bootloaders

This is a requirement for Type A apps and a recommendation for Type B apps. These sorts of
checks are habitually delegated to enterprise mobility management (EMM) tools on workforce
devices, while they are employed by the app itself in consumer-facing apps.

These are checks that are performed before or during app operation and come in the form of
libraries. The most common form of check is detection of Android rooting or iOS jailbreak. Among
the various techniques used to detect this practice is looking for the presence of Cydia on the
device (a popular app for jailbroken iOS devices). Another control can be that the app is not running
in a debugger.

Controls of this nature may be considered privacy-invasive, because they investigate outside the
boundaries of the application. The terms of agreement of the application (or the mobile policy, for
enterprise apps) should reflect this and inform the user.

The way to handle these checks will depend on the context. Aborting the app may be acceptable in
high-security B2E situations, but customer-facing apps should use this information to categorize the
user in terms of risk, rather than denying service.

The App Shall Perform Checks for Indicators of Compromise

Mobile platforms have been providing developers with tools to perform checks of the status of a
device, beyond simply checking for jailbreak/rooting detection. Although the functionality is mainly
relevant to Android, the main active threats are in Android.7

Developers should take advantage of this inbuilt functionality in the Android platform to ensure that
the environment the device is running in is not compromised. A few examples are checks to see
whether there is malware on the device, verify whether a device is a bot and perform an overall
check for indicators of compromise on the device.8

 IT SECURITY SERVICES
 SECURITY CHECKLIST FOR MOBILE APPS

SECURITY CHECKLIST FOR MOBILE APPS 1.0| Page 16

The App Code Shall Be Obfuscated

Obfuscation is typically done for consumer-facing apps and apps with sensitive data or intellectual
property. Certain commercial app stores will also add their own obfuscation to apps.
Code obfuscation scrambles the code, making it harder for the attacker to understand what the
application is doing. This may, for example, be achieved by renaming classes that may give away
the application’s functioning.

Obfuscation makes it harder for an application to be attacked and is a dissuasive measure.
However, with enough time and effort, the protections of obfuscation can be bypassed, and
developers should ensure obfuscation does not replace, but rather augments, all other security
protections considered in this checklist.

Life Cycle

All Test Data Shall Be Removed From the App Container (.ipa, .apk, etc.)

At times, developers neglect the removal of test data from the application. For example, during
testing, developers sometimes allow certain actions (e.g., key sequences) to bypass authentication
to be able to test multiple sets of data rapidly. These constitute vulnerabilities in a production app,
and they should be removed beforehand.

No Debugging Flags Shall Be Set in the Finalized App

It’s possible to forbid debuggers from interacting with the app. This makes it harder for an attacker
to reverse-engineer an application and to have visibility on background processes.

The App Shall Go Through Application Security Testing

This is a generic requirement. Mobile AST unveils vulnerabilities that could be exploited by hackers
or inadvertently leak sensitive information. The security checklist in this Toolkit provides a reminder
for developers of the pitfalls to be avoided but cannot replace testing. (For information on how
testing works, and which the main vendors are providing such services, see the Mobile use case
within the “Critical Capabilities for Application Security Testing.”)

Evidence

1 “iOS Keychain Weakness FAQ,” Fraunhofer Institute for Secure Information Technology (SIT).

2 “Elcomsoft iOS Forensic Toolkit: Enhanced Forensic Access to iPhone/iPad/iPod Devices
 Running Apple iOS“

3 “Use Whatsapp? Your Phone number Is Your Username and IMEI Is the Password —

 IT SECURITY SERVICES
 SECURITY CHECKLIST FOR MOBILE APPS

SECURITY CHECKLIST FOR MOBILE APPS 1.0| Page 17

 Hackable”

4 “GlobalPlatform: Trusted User Interface Made Simple”

5 “Annex A: Approved Security Functions for FIPS PUB 140-2, Security Requirements for
 Cryptographic Modules”

6 “Android 5.0 Behavior Changes”

7 “White Paper: Mobile Financial Malware 2017 Threat Report”

8 “Protect Against Security Threats With SafetyNet”

THE

UNIVERSITY
OF RHODE ISLAND

 DIVISION OF
 ADMINISTRATION
 AND FINANCE

PURCHASING DEPARTMENT
10 Tootell Road, Suite 3, Kingston, RI 02881 USA p: 401.874.2171 f: 401.874.2306 uri.edu/purchasing

The University of Rhode Island is an equal opportunity employer committed to the principles of affirmative action.

Important Notice

Please note that the address for the URI Purchasing Office has
changed although we have not moved and are still located in the

Dining Services Distribution Center building.

Our new address is: 10 Tootell Road

Due to the added extension of Plains Road, the street name where our building resides
has been changed and is now considered an extension of Tootell Road.

Also please remember to always write the Bid No. and the Bid
Date/Time on the upper left-hand side of your envelope:

 Bid No: ___________________
 Bid Date/Time: _____________

TO MAIL YOUR BID: University of Rhode Island
 P.O. Box 1773
 Purchasing Department
 Kingston, RI 02881

TO COURIER YOUR BID: University of Rhode Island
 Purchasing Department
 Dining Services Distribution Center
 10 Tootell Road
 Kingston, RI 02881-2010

	Binder1.pdf
	202001020941
	CR_166983_SSC

	Bid - Change of addresss notice 1-25-18

